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Abstract—This study proposes a linear time-invariant (LTI)
system based assessment approach for coronary heart disease
(CHD) risk. Unlike traditional risk regression models, the new
approach considers accumulated effects of CHD factors with
time and can thus perform time-based simulation and real time
assessment for the progression of coronary heart disease. There
are several LTI-based models achieved in this study via black
box system identification process on a 1,549-men cohort. These
models have good fitting on the sample data and can adequately
reproduce results of the current dominant risk models. Our
findings verified that the LTI-based modeling approach works
for time-based CHD assessment —- such models can be used
for time-based simulation and real time evaluation if sufficient
sample data is observed.

I. INTRODUCTION

Coronary heart disease (CHD) is the narrowing or blockage
of the coronary arteries, usually caused by atherosclerosis; it
is a major cause of mortality in many countries [1]-[3]. Real
time CHD risk assessment can improve individuals’ awareness
of their own coronary artery health condition and take actions
in a timely manner. The estimated risk can also help clini-
cians identifying high-risk patients and comparing effects of
different therapies. This is becoming increasingly beneficial
given recent advances in e-health and ubiquitous comput-
ing: with sensors and microprocessors fabricated into living
environments, individuals could be informed of their well-
beings before thorough medical examination is performed. A
prerequisite of this goal, however, is the availability of an
accurate CHD risk assessment model that can be personalized
and work with individuals in a real time manner.

Huge effort has been made in assessing CHD risk and
identifying risk factors. Traditionally, the fundamental ap-
proach is to develop regression models from cohort whose
CHD rates was recorded for years, even decades. The most
representative work of this approach is the Framingham risk
score [4], which estimates the likelihood for an individual
to develop CHD in 10 years after the score is calculated.
Framingham model and its variations are the most widely used
CHD risk models in hospitals today and they have played
an important role in informing patients about their coronary
health conditions. However, the Framingham score is relatively
static, and is thus not a good option for health monitoring in
a nonclinical environment, which requires prompt reaction to
real time dynamics.

In this study, we propose a linear time-invariant (LTI)
system based modeling approach to realize real time CHD risk
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assessment. We introduce black box system identification pro-
cedure (see section II) as the fundamental modeling method.
Picture a coronary artery system that is developing CHD as
a black box, system identification process can generally be
employed to reveal mathematically the content of the black
box. It is important to note that these models will eventually
shed light on the CHD pathology, which makes them valuable
triangulations besides modern anatomy and statistics. More-
over, this new approach is able to address the dynamics of
CHD progression because it takes in to account the temporal
effects of CHD risk factors, which traditional methods ignore.
Hence, the result models are very dynamic and cope well
with the real time requirement mentioned earlier. Last but
not least, system identification models can be personalized to
an individual’s detailed medical history, which is a favorable
feature especially for long-term users.

Besides linear models such as LTI, nonlinear system mod-
els are also equally eligible candidates for depicting CHD
progression (at least from system identification’s perspective).
However, nonlinear systems are much more complicated and
resource-consuming than linear ones, which makes them less
favored choice for ubiquitous computing devices such as mo-
bile phones and standalone sensors. Given that linear systems
have already been widely adopted to describe complex systems
in other fields such as automated control [5], [6], we prioritize
linear models as our primary exploration goal.

To verify the LTI system modeling approach, we performed
two experiments and identified a set of models that adequately
reproduced results of the currently dominant risk models. The
results showed that LTI-based modeling approach works in
CHD assessment and the dynamic feature of the models makes
it possible to assess CHD progression in a real time fashion.

The rest of this paper is organized as follows. Section II
introduces workflow and basic ingredients of system iden-
tification. Section III describes our experimental effort in
finding the set of models that best describe a coronary artery
system’s well-being. We discuss limitations of our experiments
in section IV and conclude in section V.

II. SYSTEM IDENTIFICATION

System identification refers to the process of going from
observed data to a mathematical model, which is quite funda-
mental in science and engineering [6]. The model (difference
or differential equations) is then a description of the system
and can be used for simulation and prediction [5]. In our
specific case, we hope to find a model that best describes the
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human coronary artery system. If that happens we can use the
established model to predict (estimate) the likelihood of future
CHD occurrences.

System identification is generally an iterative procedure
(see figure 1). It is characterized by four ingredients: 1) the
observed data, 2) a set of candidate models, 3) a criterion
of fit and 4) model validation principles. The observed data
usually consists of input and output signals of the target
system, sampled/collected over experiment time. Candidate
models are in their nature difference or differential equations,
with parameters to be estimated. The identification procedure
starts with preprocessing the observed data, preparing them
for parameter estimation. A model is then chosen from the
candidate set and fitted to the data. This is done by running
parameter estimation algorithms until the criterion of fit is
satisfied or the allocated time or resource is exhausted. The
output of this sub-procedure is a model whose parameters are
determined. This model then has to go through a validation
procedure for its quality to be examined. If, according to the
validation principles, the model is good, it can be accepted.
Otherwise we should go back to the model selection step, or
the data preprocess step, or even the experiment design step
and start over.

With many complex systems, such as the human coronary
artery system, our knowledge of the target system is not suf-
ficient for us to know the model structure a prior. Fortunately
there are a variety of black box models that we can try and
choose from. Because black box models (e.g. ARX, ARMAX
and artificial neural networks) have successfully described a
large set of phenomenon in the physical world, when a new
relationship needs to be described, it is often rewarding to try
the black box models first. On the other hand, if property of
the target system is already partially known, we can replace the
black box models with gray box models, which are capable of
combining insights into the model structure. Note that neither
black box models nor gray box models should be treated as a
“true” description of the system —- they are just fitted to input
and output data and are useful for generating more output data.
As Ljung puts it, “The acceptance of models depends on the
‘usefulness’ rather than the ‘truth’.” [5].

It is not surprising that the set of black box models is a
large one. Instead of elaborating each model structure here,
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we highlight the most general forms of linear and nonlinear
systems and introduce models as families.

A linear system can be characterized by Eq. (1) [5], [6]
y(t) = G(g,0)u(t) + H(g,0)e(t) (1

y(t) and wu(t) are continuous-time output and input signals
of the linear system. e(¢) denotes white noise. G(g,#) and
H(q,0) are transfer functions where ¢ is a shift operator and
0 is a vector of parameters to be estimated. Parameterizing
G(q,0) and H(q, ) gives a family of linear black box models,
among which the ARX, ARMAX, OE and BJ models are the
most commonly used.

Another class of linear models are the state space models:
x(t) = A(0)z(t) + B(O)u(t) 2)
y(t) = C(0)x(t) + v(t) 3)

Here, x(t) is a state vector and A(6), B(6) and C(0) are state
space matrices. This model structure can be converted to that
of Eq. (1) but is often not done so because the state vector
x(t) often carries insight to the system under study.

For nonlinear systems we have a more general model form
[6]:
§(t10) = 9(0,2"") “

Here, §(t|0) is the output predictor. g is a mapping from past
observations Z*~! to the next output. g can be parameterized to
generate a family of nonlinear models whose popular members
include wavelets, neural networks and fuzzy models.

III. BLACK BOX IDENTIFICATION OF THE CORONARY
ARTERY SYSTEM

We define the coronary artery system as a Multi-Input
Single-Output (MISO) system. The single output y[n] is an
individual’s real time CHD risk. The multiple inputs u;[n],i =
1,2,3... are the individual’s various baseline variables that
could affect his real time CHD risk. Note that here y[n] and
u;[n] discrete time-series signals, because they are samples of
continuously changing data points. Given this, any model who
successfully maps u;[n] to y[n] is a good CHD risk model —-
and this model is personalized (u; and y only denotes one’s
personal data) and real time (with built-in time indicator n).

In this section we elaborate our two black box experiments
by defining inputs (section III-A) and outputs (III-B) and
comparing model predictions with our validation data (section
II-C). The experiments were based on a 1,549-patient cohort
consists of Chinese men aged 41 — 74. Usage of this data was
permitted by informed consent from all participants.

A. Input Data

As described above, input signals are known factors that
could affect CHD development. Such signals can be CHD risk
factors, biomarkers, gene-markers and so on [7]. In our case,
we want to choose a set of factors that is large enough to
successfully explain output data, and small enough so that
factors are relatively independent. For our two experiments,
we chose the following factors as input signals: blood pressure,
cigarette smoking, total cholesterol (TC), LDL-C, HDL-C, C-
reactive protein (CRP), plasma glucose, and triglyceride.
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The input signals should cover a reasonably long lifespan
of a patient in order to unveil the chronic development of
CHD. Ideally, an u;[n] signal would contain a data point each
year and cover a participant’s entire adulthood. Unfortunately,
no such cohort is immediately available to the authors. As a
workaround, we leveraged our cohort data and used age-group
means to replace decades of follow-up data. We divided the
1,549 male patients aged 41 — 74 into 34 age groups. For each
age group, we computed mean value for each input signal.
In this way we obtained dynamic input signals that cover a
34-year lifespan (see figure 2).

The input signals reveal trends across different age groups
and they are no substitute of follow-up data. For example,
follow-up inputs of a real person would carry temporary
information in successive sample points, which is a huge help
for the system identification procedure to uncover the chronic
pathology of CHD. Temporal changes in age group means, on
the other hand, are not so helpful. Despite this fact, we can
still use the age group mean input signals to try out the system
identification procedure. We can expect to learn more about the
pathology significant follow-up data becomes available.

B. Output Data

The output signal y[n] is also a discrete time series signal.
Choosing a metric for y[n] is hard because y[n] indicates CHD
risk and must be measurable. The choice of y[n] also directly
decides the quality of our result model. The later should be
expected to perform at most as good as y[n]. From our experi-
ence, the best candidate metric for y[n] is the SYNTAX score
[8], which is directly computed from coronary angiographs, the
standard reference for CHD diagnose. Unfortunately, because
coronary angiography is invasive and thus usually performed
on people who already have cardiovascular diseases, it is hard
to obtain repeated SYNTAX scores of the same patient, not to
mention repeated scores of a healthy person.

Due to the above reason, in our experiments we chose
two metrics as model output: the Framingham score [4] and
the left ventricle ejection fraction (LVEF). The first metric is
a 10 year CHD risk estimation produced by Cox regression
functions. The second metric is a measurement of the pumping
ability of the heart. We use these metrics as a substitution
of the SYNTAX score, assuming that they reflect the health
condition of a person’s coronary artery system, though in far
less accuracy. We plotted the two outputs in figure 3 and found
the two metrics to be consistent: the Framingham risk score
tend to increase with age (see figure 3a), while the LVEF
tend to decrease (see figure 3b). This means as the patient
population ages, their CHD risk tend to be higher and their
heart pumping capability tend to decay.

1) Details about calculating the Framingham score: Be-
cause the patients under discussion are all Chinese males, we
used the CMCS recalibrated Framingham function for men [9]
to compute the risk score for each age group. The time series
Framingham scores depicted in figure 3a was computed using
the time series inputs smoking, fasting blood glucose, blood
pressure, total cholesterol and HDL-C (figure 2a through 2f).
Stratification of blood pressure, total cholesterol and HDL-C
was done using the same criteria as that of [9]. Regarding the
binary parameters of the Framingham model, our assumption
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was that imaginary person characterized by age group means
does smoke but does not have diabetes, as this was the
dominant phenomenon in our cohort. (Among the 1,549 male
patients, the smoker v.s. nonsmoker ratio is 1099 v.s. 450, and
the diabetes v.s. non-diabetes ratio is 401 v.s. 1148.)

2) Details about the LVEF: In our 1,549-male cohort, 520
males have LVEF record. We processed LVEF in the same way
we did to the inputs and the age group mean is plotted in figure
3b. Whether the output signal was the Framingham score or
LVEF, the same identification procedure was applied to the
corresponding data set. To save space, we do not visualize the
input time series of this smaller cohort, but it is not hard to
imagine that the variation among age group means becomes
larger as there are fewer sample points.

C. Validation

We performed black box identification for both Framing-
ham score and LVEF metrics. Our candidate model set in-
cludes: transfer function models, ARX, ARMAX, OE, BJ, state
space models, process models, correlation models, nonlinear
ARX and the Hammerstein-Wiener model.

For each input-output combination, we performed black
box identification on each of the above model structures. The
procedure involves both order selection and parameter esti-
mation. The result models were validated by comparing their
prediction outputs with our validation data (which is part of the
observed input data). We use a 0 — 100 scale, borrowed from
Matlab system identification toolbox, to intuitively evaluate the
quality of the result models. The higher the score is, the better
a model fits our validation data. Using this score, we were able
to rank all result models and pick out models that represent best
mappings from the input data to our two output metrics. For
our first experiment where Framingham 10 year CHD score
was used, we found the four best mappings to be: state space
model, Hammerstein-Wienner model, ARX and ARMAX (see
figure 4). These models scored 81.08, 80.52, 78.30 and 71.20
in our 0 — 100 score system. In our second experiment where
the LVEF value becomes the output signal, the two models
that scored over 50 were state space model (scored 91.92) and
ARX (scored 72.83) (see figure 5).

From our two experiments it seems that both linear and
nonlinear models can adequately map input risk factors to
output metrics, which is not uncommon in the field of system
identification. As mentioned earlier, a model is not a “true”
description but a good mapping of observed data. Note that in
both experiments, linear black box models exhibit good quality,
even if the output signals are of quite different nature. Such
observation is in agreement with the common consent that
linear models are quite expressive and covers a large class of
phenomena in the physical world.

IV. DISCUSSION

Our current experiments were not designed to build CHD
risk model from our cohort. Instead, the purpose was to
introduce system identification as an new approach by doing
some quick demonstrations. Therefore, the two experiments
we have done so far have several limitations.

First, the Framingham score and LVEF are only metrics
we chose to quantize the well-being of a coronary system, not
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direct quantitative descriptions of the real artery system. The
models we identified from these metrics should be expected
to be at most as accurate as these metrics, if the two metrics
were accurate at all. However, the accuracy of the system
identification models can readily be improved once higher-
quality output data (such as the SYNTAX score mentioned
above) becomes available. The exactly same set of techniques
can be used to produce models that will eventually outperform
traditional models. One might question, however, when new
data do become available, would the models be able to express
the new relationships? Our answer is yes. In our current
experiments, the fact that black box models successfully map
risk factors to both Framingham score and LVEF demonstrates
the expressiveness of these models. They should also fit the
new data as long as it resembles our current two metrics.

The second limitation with our experiments is that we
are using a static cohort to substitute what the identification
procedure expects: years of follow-up of an individual. The
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primary drawback of this approach is that we lose the temporal
relationship between successive data points in our time series
signals. To shed more light on the chronic affects among risk
factors, it is necessary to obtain follow-up cohort is model
inputs.

The two limitations we have mentioned here also reflect a
pragmatic challenge: cohort data that satisfies system identi-
fication’s specific requirements (dynamic follow-ups that last
for years) is hard to obtain.

V. CONCLUSION

We proposed system identification as a promising alterna-
tive to traditional regression models in assessing CHD risk.
The major advantages of system identification models are that
they can be individualized and used in real time. Through our
two preliminary experiments, we have shown that the currently
available models are very expressive and fit well with the
dominant CHD risk metrics used today. With the support of
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more descriptive data, system identification models have great
potentials in outperforming models available today.
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